Online Textbook Practice Tests 1500 Calculus Problems Solved About

0.10: Sigma Notation

Given the ubiquity of summations in mathematics, let's find a way to abbreviate this operation by using sigma notation. In this section we discuss the following:

Defining Sigma Notation

We use sigma notation to condense summations. The Greek letter \(\sum\) (sigma) means sum. The following definition explains its use.

SIGMA NOTATION
If \(a_m,\) \(a_{m + 1},\) \(a_{m + 2}, \dots,\) \(a_{n - 1},\) \(a_n\) are real numbers, and \(m\) and \(n\) are integers such that \(m \leq n,\) then \begin{equation} \sum_{i = m}^n a_i = a_m + a_{m + 1} + a_{m + 2} + \cdots + a_{n - 1} + a_n \pd \label{eq:sigma-def} \end{equation}
EXAMPLE 1
Evaluate the following sums.
  1. \(\ds \sum_{i = 1}^5 i\)
  2. \(\ds \sum_{i = 0}^3 i^3\)
  3. \(\ds \sum_{j = 2}^4 \frac{j + 3}{7j + 1}\)
We follow the formula in \(\eqref{eq:sigma-def}.\)
  1. Expanding the summation, we get \[ \ba \sum_{i = 1}^5 i &= 1 + 2 + 3 + 4 + 5 \nl &= \boxed{15} \ea \]

  2. We have \[ \ba \sum_{i = 0}^3 i^3 &= 0^3 + 1^3 + 2^3 + 3^3 \nl &= \boxed{36} \ea \]

  3. We have \[ \ba \sum_{j = 2}^4 \frac{j + 3}{7j + 1} &= \frac{(2) + 3}{7(2) + 1} + \frac{(3) + 3}{7(3) + 1} + \frac{(4) + 3}{7(4) + 1} \nl &= \boxed{\frac{811}{957}} \ea \]
EXAMPLE 2
For any constant \(c,\) show that \[\sum_{i = 1}^n c = c \, n \pd\]
We see \[ \ba \sum_{i = 1}^n c &= \underbrace{c + c + c + \cdots}_{n \text{ terms}} \nl &= c \, n \cma \ea \] as requested.
EXAMPLE 3
Prove that \[\sum_{i = 1}^n i = \frac{n(n + 1)}{2} \pd\]
Let's write the terms in ascending order and then in descending order, as follows: \[ \baat{7} S &= 1 &&+ 2 &&+ 3 &&+ \cdots &&+ (n - 2) &&+ (n - 1) &&+ n \cma \nl S &= n &&+ (n - 1) &&+ (n - 2) &&+ \cdots &&+ 3 &&+ 2 &&+ 1 \pd \eaat \] Adding every column vertically gives \[ \ba 2S &= \underbrace{(n + 1) + (n + 1) + (n + 1) + (n + 1) + \cdots}_{n \textrm{ terms}} \nl &= n(n + 1) \pd \ea \] Then solving for \(S\) gives, as requested, \[S = \frac{n(n + 1)}{2} \pd\]
EXAMPLE 4
Using a Proof by Induction, prove that \[\sum_{i = 1}^n i^2 = \frac{n(n + 1)(2n + 1)}{6} \pd\]
Let \(S_n\) be the statement \[\sum_{i = 1}^n i^2 = \frac{n(n + 1)(2n + 1)}{6} \pd\] To perform a Proof by Induction, we first show that \(S_1\) is true and then show that if \(S_k\) is true (where \(k\) is a positive integer), then \(S_{k + 1}\) is also true. First observe that \[S_1 = 1^2 \equalsCheck \frac{1(1 + 1)(2 + 1)}{6} \pd\] Next assume that \(S_k\) is true—that is, \[\sum_{i = 1}^k i^2 = \frac{k(k + 1)(2k + 1)}{6} \pd\] Observe that \[ \ba S_{k + 1} &= \sum_{i = 1}^{k + 1} i^2 \nl &= \sum_{i = 1}^k i^2 + (k + 1)^2 \nl &= \frac{k(k + 1)(2k + 1)}{6} + (k + 1)^2 \nl &= (k + 1) \parbr{\frac{k (2k + 1)}{6} + (k + 1)} \nl &= (k + 1) \parbr{\frac{k (2k + 1) + 6(k + 1)}{6}} \nl &= (k + 1) \parbr{\frac{2k^2 + 7k + 6}{6}} \nl &= (k + 1) \parbr{\frac{(k + 2)(2k + 3)}{6}} \nl &= \frac{(k + 1) [(k + 1) + 1] [2(k + 1) + 1]}{6} \pd \ea \] Thus, \(S_{k + 1}\) is also true. By mathematical induction, \(S_n\) is true for all positive integers \(n.\)

Properties of Summations

Instead of performing long computations, let's use rules to simplify the evaluation of summations.

PROPERTIES OF SUMMATIONS
If \(c\) is a constant, and \(a_i\) and \(b_i\) are real numbers for all \(m \leq i \leq n,\) then we have the following properties: \begin{align} \sum_{i = m}^n (a_i + b_i) &= \sum_{i = m}^n a_i + \sum_{i = m}^n b_i \cma \label{eq:sigma-sum} \nl \sum_{i = m}^n (a_i - b_i) &= \sum_{i = m}^n a_i - \sum_{i = m}^n b_i \cma \label{eq:sigma-diff} \nl \sum_{i = m}^n c a_i &= c \sum_{i = m}^n a_i \pd \label{eq:sigma-cons} \nl \end{align}

In words, the summation of a sum is the sum of summations [by \(\eqref{eq:sigma-sum}\)] and the summation of a difference is the difference of summations [by \(\eqref{eq:sigma-diff}\)]. By \(\eqref{eq:sigma-cons},\) we can pull out a constant from the summation expression. Let's also provide a list of useful formulas, which include the results of Example 2, Example 3, and Example 4.

SUMMATION FORMULAS
Let \(c\) be a constant. \begin{align} \sum_{i = 1}^n c &= c \, n \cma \label{eq:sum-c} \nl \sum_{i = 1}^n i &= \frac{n(n + 1)}{2} \cma \label{eq:sum-i} \nl \sum_{i = 1}^n i^2 &= \frac{n(n + 1)(2n + 1)}{6} \cma \label{eq:sum-i2} \nl \sum_{i = 1}^n i^3 &= \parbr{\frac{n(n + 1)}{2}}^2 \pd \label{eq:sum-i3} \end{align}
EXAMPLE 5
\[\sum_{i = 1}^{10} \par{2i^3 - 6i^2 + 8i}\]
Let the sum be \(S.\) We decompose the series one step at a time, as follows: \[ \baat{2} S &= \sum_{i = 1}^{10} 2i^3 - \sum_{i = 1}^{10} 6 i^2 + \sum_{i = 1}^{10} 8i &&\comment{\text{by } \eqref{eq:sigma-sum} \text{ and } \eqref{eq:sigma-diff}} \nl &= 2 \sum_{i = 1}^{10} i^3 - 6 \sum_{i = 1}^{10} i^2 + 8 \sum_{i = 1}^{10} i &&\comment{\text{by } \eqref{eq:sigma-cons}} \nl &= 2 \parbr{\frac{10(10 + 1)}{2}}^2 - 6 \parbr{\frac{10(10 + 1)(2 \cdot 10 + 1)}{6}} + 8 \parbr{\frac{10(10 + 1)}{2}} &&\comment{\text{by } \eqref{eq:sum-i3} \cma \eqref{eq:sum-i2} \cma \text{and } \eqref{eq:sum-i}} \nl &= \boxed{4180} \eaat \]

Defining Sigma Notation If \(a_m,\) \(a_{m + 1},\) \(a_{m + 2}, \dots,\) \(a_{n - 1},\) \(a_n\) are real numbers, and \(m\) and \(n\) are integers such that \(m \leq n,\) then \begin{equation} \sum_{i = m}^n a_i = a_m + a_{m + 1} + a_{m + 2} + \cdots + a_{n - 1} + a_n \pd \eqlabel{eq:sigma-def} \end{equation}

Properties of Summations If \(c\) is a constant, and \(a_i\) and \(b_i\) are real numbers for all \(m \leq i \leq n,\) then we have the following properties: \begin{align} \sum_{i = m}^n (a_i + b_i) &= \sum_{i = m}^n a_i + \sum_{i = m}^n b_i \cma \eqlabel{eq:sigma-sum} \nl \sum_{i = m}^n (a_i - b_i) &= \sum_{i = m}^n a_i - \sum_{i = m}^n b_i \cma \eqlabel{eq:sigma-diff} \nl \sum_{i = m}^n c a_i &= c \sum_{i = m}^n a_i \pd \eqlabel{eq:sigma-cons} \nl \end{align} The following formulas also prove useful in dissecting sums: \begin{align} \sum_{i = 1}^n c &= c \, n \cma \eqlabel{eq:sum-c} \nl \sum_{i = 1}^n i &= \frac{n(n + 1)}{2} \cma \eqlabel{eq:sum-i} \nl \sum_{i = 1}^n i^2 &= \frac{n(n + 1)(2n + 1)}{6} \cma \eqlabel{eq:sum-i2} \nl \sum_{i = 1}^n i^3 &= \parbr{\frac{n(n + 1)}{2}}^2 \pd \eqlabel{eq:sum-i3} \end{align}